You forget the lift by air depression on the wings.
When the space shuttle (which is basically a plane) takes off vertically, as long as the thrust is less than 10 [N/kg], it does not move. When the thrust exceeds this value, it moves up. [If you then cut the engines, it slows down, stops and falls like a stone.] That's what your equations describe.
When a plane flies horizontally at a constant speed, the gravitation is compensated by depression on wings - if you cut the engines, the plane glides. You still can keep it at constant horizontal speed, it slowly loses potential energy, but does not vertically fall like a stone. This implies that on constant speed/height, you need to furnish less energy than by a vertical takeoff and therefore less thrust.
Another approach: The energy of a cruising plane is constant, so the furnished energy must be equal to the energy lost. As the lost energy is partly transformed to lift on the wings...