Jump to content
BrainDen.com - Brain Teasers

bonanova

Moderator
  • Content Count

    6972
  • Joined

  • Last visited

  • Days Won

    66

bonanova last won the day on June 11

bonanova had the most liked content!

Community Reputation

85

About bonanova

  • Rank
    Retired Expert
  • Birthday November 3

Profile Fields

  • Gender
    Male
  • Location
    Ohio
  • Interests
    Choral music, performing and directing, photography.

Recent Profile Visitors

30670 profile views
  1. So the problem is to fill a cubical box of side S with convex blocks having integral-length edges {L W H} whose values are taken without replacement from the set { 1, 2, 3, 4, 5, 6, ..., S-2, S-1, S } ? Or must they be taken from the set that excludes S? That is, can one of the blocks have an edge length equal to S?
  2. Assuming you meant things of value (perhaps coins?) into the boxes, then ...
  3. The LxWxH block dimension seems to rule out Since OP does not it seems the smallest box would be But that requirement probably was intended. Also, I don't see that unique coloring imposes any limits beyond that of unique dimensions.
  4. Jane, Janice, Jack, Jasper, and Jim are five high-school chums. Their last names are, in some order, Carter, Carver, Clark, Clayton, and Cramer. What are their full names? Here are some clues. Jasper's mom is deceased. In deference to an influential family member, the Claytons agreed that if they ever had a daughter they would name her Janice. Jane's parents have never met Jack's parents. The Cramer and Carter children have been teammates on several of the school's athletic teams. When he heard that Carver was going to out of town on the night of the school's Fat
  5. @plasmid My bad. It's not polite to post a puzzle and then go dark for two months. Apologies. In the first version there was no acceleration cost for either contestant. They both could stop on a dime, turn, and resume at full speed instantly. So here I've added a cost for angular change of velocity (for the boat only) but none for linear acceleration. Before I finished my solution my hard drive fried. I replaced my computer but I lost my work. I'll share how far I got and maybe we can finish this off collaboratively.
  6. I sort of hesitate to relay a tongue in cheek report I read a while back that photochromic materials are not of recent discovery, but were actually known back in the time of Alexander the Great. A black substance could be ground into powder and dissolved in water. Alexander’s troops would soak strips of cloth torn from their togas in this solution and tie them around their wrists. As the sun rose, traversed the sky and then set, the treated cloth would change color, and by glancing at them his men could tell the approximate time of day. They called it Alexander’s Rag Time Band.
  7. In each case is there a swap? Or are there longer cycles as well?
  8. Hi @CynPyn and welcome to the Den. Let's accept from this that Rmax is the unit diameter circle. Now imagine a rectangle with unit diameter (diagonal has length 1.) That can be made to fit into Rmax . The question is does every unit-diameter region into Rmax ?
  9. The diameter of a closed, topologically bounded region of the plane is the greatest distance between two points in the region. Example: the diameter of a rectangle is the length of its diagonal. Of all the regions whose diameter equals 1, one of them, call it Rmax, encloses the largest area. Can you prove, or disprove, that Rmax also encloses all other regions of diameter 1? That is, that all other regions of diameter 1 can be made to fit inside Rmax?
  10. Previously, Maiden’s boat could change its heading instantaneously. Ogre’s heading could change only by virtue of following a circular path along the shore at his current speed. His rotational speed was thus far from infinite, and perhaps that disadvantage was unfair. So in this final puzzle iteration we’ll limit the boat’s linear speed to be f times that of Ogre, as before, but now we’ll also limit the boat’s angular speed to be never greater than g times Ogre’s top angular speed. A moment’s thought tells us that unless g is greater than unity the boat’s best strategy is to run at full
  11. Yes it is possible. The Triborough Bridge in New York connects Manhattan, the Bronx and' Queens.
  12. Hmmm. I hadn't considered that. Is there a different solution if the murderer did not own the murder weapon?
  13. Nicely done. As for adding some wrinkle to the problem, how about this? Suppose we have to add some time for her to get out of the boat before she starts to run. We could say the ogre must have an angular separation of s radians from the boat when it lands, and then minimize f. Hmmm. I'm guessing the same path just minimizes f to a slightly larger value. Hi @The Lonewolf Brand and welcome to the Den. That would mean the maiden's boat and the ogre have the same speed. She can escape from a faster ogre.
  14. Interesting idea. How would we pose that question exactly? .
  15. What a deliciously challenging and intriguing puzzle.
×
×
  • Create New...