BMAD Posted February 25, 2013 Report Share Posted February 25, 2013 The towns of Alpha, Beta, and Gamma are equidistant from each other. If a car is three miles from Alpha and four miles from Beta, what is the maximum possible distance of the car from Gamma? Assume the land is flat. Quote Link to comment Share on other sites More sharing options...
0 k-man Posted February 25, 2013 Report Share Posted February 25, 2013 (edited) Reveal hidden contents I'm finding it hard to believe, so I'm second guessing myself that I messed up somewhere in the calculations, but the answer I got is 7. It occurs when the angle formed between Alpha,Car,Beta is 120 degrees and the distance between the towns is sqrt(37). Edited February 25, 2013 by k-man Quote Link to comment Share on other sites More sharing options...
0 bonanova Posted February 25, 2013 Report Share Posted February 25, 2013 Reveal hidden contents Don't have pencil and paper handy. It occurs to me the towns are 1 mile apart and the car lies on a line joining alpha and beta. Its distance from gamma is 3.5 miles along that line, say north, and the height of the triangle say to the east. Apply Pythagoras. Quote Link to comment Share on other sites More sharing options...
0 BMAD Posted February 25, 2013 Author Report Share Posted February 25, 2013 (edited) On 2/25/2013 at 5:15 AM, bonanova said: Reveal hidden contents Don't have pencil and paper handy. It occurs to me the towns are 1 mile apart and the car lies on a line joining alpha and beta. Its distance from gamma is 3.5 miles along that line, say north, and the height of the triangle say to the east. Apply Pythagoras. Reveal hidden contents They don't have to be 1 mile apart and i got 3.61 when they were 1 mile apart Edited February 25, 2013 by BMAD Quote Link to comment Share on other sites More sharing options...
0 CaptainEd Posted February 25, 2013 Report Share Posted February 25, 2013 Reveal hidden contents If the side of the equilateral triangle were 5, and the car formed a 3,4,5 triangle with Alpha and Beta, then the car would be 6.77 from Gamma. It isn't as good to put the car on the line between alpha and beta, with a side of 7, as the car would be 6.01 from gamma. Quote Link to comment Share on other sites More sharing options...
0 BMAD Posted February 25, 2013 Author Report Share Posted February 25, 2013 On 2/25/2013 at 3:04 PM, CaptainEd said: Reveal hidden contents If the side of the equilateral triangle were 5, and the car formed a 3,4,5 triangle with Alpha and Beta, then the car would be 6.77 from Gamma. It isn't as good to put the car on the line between alpha and beta, with a side of 7, as the car would be 6.01 from gamma. That is a nice improvement CaptainEd but still even that isn't the maximum distance. Quote Link to comment Share on other sites More sharing options...
0 BMAD Posted February 25, 2013 Author Report Share Posted February 25, 2013 On 2/25/2013 at 6:58 PM, k-man said: Reveal hidden contents I'm finding it hard to believe, so I'm second guessing myself that I messed up somewhere in the calculations, but the answer I got is 7. It occurs when the angle formed between Alpha,Car,Beta is 120 degrees and the distance between the towns is sqrt(37). Reveal hidden contents I found the distance between the towns to be the sqrt(36) or 6. Quote Link to comment Share on other sites More sharing options...
0 k-man Posted February 25, 2013 Report Share Posted February 25, 2013 (edited) Reveal hidden contents ...and sqrt(37) is the correct distance between the towns. For any a and b, where a is the distance from the car to Alpha and b is the distance from the car to Beta, the maximum distance from the car to Gamma is a+b and is achieved when the angle formed by the lines connecting the car with Alpha and Beta is equal 120 degrees. Applying the law of cosines with 120 degree angle we get the distance between towns = sqrt( 32 + 42 - 2 * 3 * 4 * cos(pi/3) ) = sqrt(37). Edited February 25, 2013 by k-man Quote Link to comment Share on other sites More sharing options...
0 BMAD Posted February 26, 2013 Author Report Share Posted February 26, 2013 On 2/25/2013 at 9:57 PM, k-man said: Reveal hidden contents ...and sqrt(37) is the correct distance between the towns. For any a and b, where a is the distance from the car to Alpha and b is the distance from the car to Beta, the maximum distance from the car to Gamma is a+b and is achieved when the angle formed by the lines connecting the car with Alpha and Beta is equal 120 degrees. Applying the law of cosines with 120 degree angle we get the distance between towns = sqrt( 32 + 42 - 2 * 3 * 4 * cos(pi/3) ) = sqrt(37). three towns.png I stand corrected. I didn't catch that i rounded :b Quote Link to comment Share on other sites More sharing options...
0 Debasis Posted February 26, 2013 Report Share Posted February 26, 2013 (edited) Reveal hidden contents gamma should be (3^1/2)3.5/2 miles apart if we draw two circle with center alpha and radius 3miles and beta with radius miles we see that gamma will see that they will form an equilateral triangle with side 3.5 iles applying pythagoras theorem we will get the maximum distance.... now i found out that i am wrong .....Happens! Edited February 26, 2013 by Debasis Quote Link to comment Share on other sites More sharing options...
0 Debasis Posted February 26, 2013 Report Share Posted February 26, 2013 On 2/25/2013 at 9:57 PM, k-man said: Reveal hidden contents ...and sqrt(37) is the correct distance between the towns. For any a and b, where a is the distance from the car to Alpha and b is the distance from the car to Beta, the maximum distance from the car to Gamma is a+b and is achieved when the angle formed by the lines connecting the car with Alpha and Beta is equal 120 degrees. Applying the law of cosines with 120 degree angle we get the distance between towns = sqrt( 32 + 42 - 2 * 3 * 4 * cos(pi/3) ) = sqrt(37). three towns.png hey man can you tell me how you worked out that the angle between alpha and beta should be 120 degrees .i just acant understand..Thanks Quote Link to comment Share on other sites More sharing options...
0 k-man Posted February 26, 2013 Report Share Posted February 26, 2013 On 2/26/2013 at 10:52 AM, Debasis said: On 2/25/2013 at 9:57 PM, k-man said: Reveal hidden contents ...and sqrt(37) is the correct distance between the towns. For any a and b, where a is the distance from the car to Alpha and b is the distance from the car to Beta, the maximum distance from the car to Gamma is a+b and is achieved when the angle formed by the lines connecting the car with Alpha and Beta is equal 120 degrees. Applying the law of cosines with 120 degree angle we get the distance between towns = sqrt( 32 + 42 - 2 * 3 * 4 * cos(pi/3) ) = sqrt(37). three towns.png hey man can you tell me how you worked out that the angle between alpha and beta should be 120 degrees .i just acant understand..Thanks I knew someone would ask that question It was a little messy and maybe not in the most efficient way, but... Reveal hidden contents I used the laws of cosines and sines to express the distance to Gamma as a function of the angle between Alpha and Beta. Then I to took a derivative of that function to find the local maxima and found it to be at 120 degrees. If I have more time later, I may post the complete solution Quote Link to comment Share on other sites More sharing options...
0 Debasis Posted February 27, 2013 Report Share Posted February 27, 2013 On 2/26/2013 at 3:05 PM, k-man said: On 2/26/2013 at 10:52 AM, Debasis said: On 2/25/2013 at 9:57 PM, k-man said: Reveal hidden contents ...and sqrt(37) is the correct distance between the towns. For any a and b, where a is the distance from the car to Alpha and b is the distance from the car to Beta, the maximum distance from the car to Gamma is a+b and is achieved when the angle formed by the lines connecting the car with Alpha and Beta is equal 120 degrees. Applying the law of cosines with 120 degree angle we get the distance between towns = sqrt( 32 + 42 - 2 * 3 * 4 * cos(pi/3) ) = sqrt(37). three towns.png hey man can you tell me how you worked out that the angle between alpha and beta should be 120 degrees .i just acant understand..Thanks I knew someone would ask that question It was a little messy and maybe not in the most efficient way, but... Reveal hidden contents I used the laws of cosines and sines to express the distance to Gamma as a function of the angle between Alpha and Beta. Then I to took a derivative of that function to find the local maxima and found it to be at 120 degrees. If I have more time later, I may post the complete solution thanks! Quote Link to comment Share on other sites More sharing options...
Question
BMAD
The towns of Alpha, Beta, and Gamma are equidistant from each other. If a car is three miles from Alpha and four miles from Beta, what is the maximum possible distance of the car from Gamma? Assume the land is flat.
Link to comment
Share on other sites
12 answers to this question
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.