My first strategy
Step 2 - Final adaptive questions (at most 3)
--------------------------------------------
All but one case in the table have at least 1 sure position and at least 1 truth-teller among these positions.
Target that one known truthteller (let's call him Oracle) with the rest of the questions.
First, let's eliminate most of the cases.
If there are 3 or more sure positions, then at most 4 unknowns remain. Therefore 3 questions targeted at the Oracle about 3 unknown positions give a total of 6 sure positions and the last can be deduced by whatever type (R or T) is missing from the (3R, 4T) distribution.
If there are 2 sure positions, then it's one of the following 7 cases:
20) NYNNYY- 4 possibilities: TTRTTRR, TTRRTRT, RTRTTRT, RRTTTRT. 2 sure positions: ----TR-.
25) NYYNNN- 4 possibilities: TTRRRTT, RTRRTTT, RRTRTTT, RRRTTTT. 2 sure positions: -----TT.
27) NYYNYN- 4 possibilities: TTRTTRR, TTRRTRT, RTRTTRT, TTRRRTT. 2 sure positions: -TR----.
41) YNYNNN- 5 possibilities: TRTRRTT, RTTRRTT, TRRRTTT, RRTRTTT, RRRTTTT. 2 sure positions: -----TT.
45) YNYYNN- 5 possibilities: TRTRRTT, RTTRRTT, TRRTRTT, TRRRTTT, RRTRTTT. 2 sure positions: -----TT.
57) YYYNNN- 5 possibilities: TRTRRTT, TRRRTTT, RTRRTTT, RRTRTTT, RRRTTTT. 2 sure positions: -----TT.
61) YYYYNN- 6 possibilities: TRTRRTT, TRRTRTT, RTRTRTT, TRRRTTT, RTRRTTT, RRTRTTT. 2 sure positions: -----TT.
For each case, 3 well-targeted questions clear the rest of the arrangement.
If there is only 1 sure position, then it's one of the following 10 cases:
9) NNYNNN- 4 possibilities: TTTRRRT, RTTRRTT, RRTRTTT, RRRTTTT. 1 sure position: ------T.
21) NYNYNN- 5 possibilities: TTRTRRT, TTRRRTT, RTRTRTT, RRTTRTT, RTRRTTT. 1 sure position: ------T.
23) NYNYYN- 5 possibilities: TTRTRRT, TTRRTRT, TTRRRTT, RTRTRTT, RRTTRTT. 1 sure position: ------T.
29) NYYYNN- 5 possibilities: TTRTRRT, TTRRRTT, RTRTRTT, RTRRTTT, RRTRTTT. 1 sure position: ------T.
37) YNNYNN- 5 possibilities: TRTTRRT, RTTTRRT, TRRTRTT, RRTTRTT, TRRRTTT. 1 sure position: ------T.
43) YNYNYN- 5 possibilities: TRTRTRT, RTTRTRT, TRRTTRT, TRTRRTT, RTTRRTT. 1 sure position: ------T.
47) YNYYYN- 5 possibilities: TRTRTRT, RTTRTRT, TRTRRTT, RTTRRTT, TRRTRTT. 1 sure position: ------T.
53) YYNYNN- 6 possibilities: TRTTRRT, TRRTRTT, RTRTRTT, RRTTRTT, TRRRTTT, RTRRTTT. 1 sure position: ------T.
59) YYYNYN- 4 possibilities: TRTRTRT, TRRTTRT, RTRTTRT, TRTRRTT. 1 sure position: ------T.
63) YYYYYN- 4 possibilities: TRTRTRT, TRTRRTT, TRRTRTT, RTRTRTT. 1 sure position: ------T.
For each case, 3 well-targeted questions clear the rest of the arrangement.
At last, the infamous branch with 0 sure positions.
19) NYNNYN- 5 possibilities: TTRTTRR, TTRRTRT, RTRTTRT, RRTTTRT, TTRRRTT. 0 sure position: -------.
3 more questions and we're done:
Ask the last (7th) in the line if the first one is random.
If Yes - TTRTTRR, RTRTTRT, RRTTTRT. Now the mask is ---TTR-. Ask an Oracle if the last is R (one case). If not, ask if second is R (one case for each answer).
If No - TTRTTRR, TTRRTRT, TTRRRTT. Now the mask is TTR----. Ask an Oracle if the last is R (one case). If not, ask if the sixth is R (one case for each answer).