(This puzzle is taken from a blog called By Way Of Contradiction)
Imagine the following two player game. Alice secretly fills 3 rooms with apples. She has an infinite supply of apples and infinitely large rooms, so each room can have any non-negative integer number of apples. She must put a different number of apples in each room. Bob will then open the doors to the rooms in any order he chooses. After opening each door and counting the apples, but before he opens the next door, Bob must accept or reject that room. Bob must accept exactly two rooms and reject exactly one room. Bob loves apples, but hates regret. Bob wins the game if the total number of apples in the two rooms he accepts is a large as possible. Equivalently, Bob wins if the single room he rejects has the fewest apples. Alice wins if Bob loses.
Which of the two players has the advantage in this game?
Question
gavinksong
(This puzzle is taken from a blog called By Way Of Contradiction)
Imagine the following two player game. Alice secretly fills 3 rooms with apples. She has an infinite supply of apples and infinitely large rooms, so each room can have any non-negative integer number of apples. She must put a different number of apples in each room. Bob will then open the doors to the rooms in any order he chooses. After opening each door and counting the apples, but before he opens the next door, Bob must accept or reject that room. Bob must accept exactly two rooms and reject exactly one room. Bob loves apples, but hates regret. Bob wins the game if the total number of apples in the two rooms he accepts is a large as possible. Equivalently, Bob wins if the single room he rejects has the fewest apples. Alice wins if Bob loses.
Which of the two players has the advantage in this game?
Link to comment
Share on other sites
42 answers to this question
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.