Suppose you have a triangle that has 2-1 inch lengths. Divide this triangle into half by drawing a line from vertex between the two identical sides, choose one of the sides randomly and shade it. The non-shaded side is cut in half again. Choose one of these sides randomly and cut it in half again shading one random piece. If this pattern of cut, shade, cut, cut, shade, cut, cut, shade cut, cut,.... was to be continued forever, what would be the area of the shaded region?
Suppose you have a triangle that has 2-1 inch lengths. Divide this triangle into half by drawing a line from vertex between the two identical sides, choose one of the sides randomly and shade it. The non-shaded side is cut in half again. Choose one of these sides randomly and cut it in half again shading one random piece. If this pattern of cut, shade, cut, cut, shade, cut, cut, shade cut, cut,.... was to be continued forever, what would be the area of the shaded region?
Share this post
Link to post
Share on other sites