Jump to content
BrainDen.com - Brain Teasers
  • 0

More cryptarithms - Lucky 7's fixed


bonanova
 Share

Question

The was solved quickly.

Congratulations to curr3nt and Rob_Gandy, the early solvers.

These may pose a better challenge; a three-pack!

Letter clues constrain the substituted numbers: same digit for every A, etc.

Asterisks are wild cards, can be any digit.

1. Easy as A-B-C.

. . . A B C

. . . B A C

. . -------

. . * * * *

. . * * A

* * * B

-----------

* * * * * *

2. Four Aces.

. . . * * *

. . . * 2 *

. . . -----

. . . * * *

. * * * *

. * 8 *

-----------

* * 9 * 2 *

3. Lucky 7's.

. . . . . . . . . . . * * 7 * *

. . . . . .--------------------

* * * 7 * / * * 7 * * * * * * *

. . . . . . * * * * * *

. . . . . . -------------

. . . . . . * * * * 7 7 *

. . . . . . * * * * * * *

. . . . . . -------------

. . . . . . . . * 7 * * * *

. . . . . . . . * 7 * * * *

. . . . . . . . -------------

. . . . . . . . * * * * * * *

. . . . . . . . * * * * 7 * *

. . . . . . . . ---------------

. . . . . . . . . . * * * * * *

. . . . . . . . . . * * * * * *

Edit: the leftmost number needs a leading asterisk.

It should read: * * * * 7 *

Link to comment
Share on other sites

12 answers to this question

Recommended Posts

  • 0

The Lucky 7 is impossible. How can a five digit number times a single digit yield a seven digit number?

. . . . . . . . . . . * * 7 * *

. . . . . .--------------------

* * * 7 * / * * 7 * * * * * * *

. . . . . . * * * * * *

. . . . . . -------------

. . . . . . * * * * 7 7 *

. . . . . . * * * * * * *

. . . . . . -------------

. . . . . . . . * 7 * * * *

. . . . . . . . * 7 * * * *

. . . . . . . . -------------

. . . . . . . . * * * * * * *

. . . . . . . . * * * * 7 * *

. . . . . . . . ---------------

. . . . . . . . . . * * * * * *

. . . . . . . . . . * * * * * *

Link to comment
Share on other sites

  • 0

Fifth row of numbers should be ***7* times the second number in **7**. The result is a seven digit number which isn't possible.

I would expect an equation like below otherwise you are doing division much differently than I was taught. The remainder of each step should be less than divisor. If the remainder is six digits like you have listed in two steps then I have no idea since a six digit number is bigger than a five digit divisor.

. . . . . . . . . . . * * 7 * *

. . . . . .--------------------

* * * 7 * / * * 7 * * * * * * *

. . . . . . * * * * * *

. . . . . . -------------

. . . . . .. * * * 7 7 *

. . . . . . . * * * * * *

. . . . . . -------------

. . . . . . . . * 7 * * * *

. . . . . . . . * 7 * * * *

. . . . . . . . -------------

. . . . . . . . . * * * * * *

. . . . . . . . . * * * 7 * *

. . . . . . . . ---------------

. . . . . . . . . . * * * * * *

. . . . . . . . . . * * * * * *

Link to comment
Share on other sites

  • 0

Does this better illustrate the issue I'm having?

. . . . . . . . . . . A B 7 C D

. . . . . .--------------------

W X Y 7 Z / * * 7 * * * * * * *

. . . . . . * * * * * * . . . . .WXY7Z * A

. . . . . . -------------

. . . . . . * * * * 7 7 *

. . . . . . * * * * * * * . . . .WXY7Z * B (How can this be 7 digits?)

. . . . . . -------------

. . . . . . . . * 7 * * * *

. . . . . . . . * 7 * * * * . . .WXY7Z * 7

. . . . . . . . -------------

. . . . . . . . * * * * * * *

. . . . . . . . * * * * 7 * * . .WXY7Z * C (How can this be 7 digits?)

. . . . . . . . ---------------

. . . . . . . . . . * * * * * *

. . . . . . . . . . * * * * * * .WXY7Z * D

Link to comment
Share on other sites

  • 0

Figuring the 5878* and 12547* was fairly easy. I did trial and error to get the last two *.

. . . . . . . . . . . . 5 8 7 8 1

. . . . . . .--------------------

1 2 5 4 7 3 / 7 3 7 5 4 2 8 4 1 3

. . . . . . . 6 2 7 3 6 5

. . . . . . . -------------

. . . . . . . 1 1 0 1 7 7 8

. . . . . . . 1 0 0 3 7 8 4

. . . . . . . -------------

. . . . . . . . . 9 7 9 9 4 4

. . . . . . . . . 8 7 8 3 1 1

. . . . . . . . . -------------

. . . . . . . . . 1 0 1 6 3 3 1

. . . . . . . . . 1 0 0 3 7 8 4

. . . . . . . . . ---------------

. . . . . . . . . . . 1 2 5 4 7 3

. . . . . . . . . . . 1 2 5 4 7 3

Link to comment
Share on other sites

  • 0

Figuring the 5878* and 12547* was fairly easy. I did trial and error to get the last two *.

. . . . . . . . . . . . 5 8 7 8 1

. . . . . . .--------------------

1 2 5 4 7 3 / 7 3 7 5 4 2 8 4 1 3

. . . . . . . 6 2 7 3 6 5

. . . . . . . -------------

. . . . . . . 1 1 0 1 7 7 8

. . . . . . . 1 0 0 3 7 8 4

. . . . . . . -------------

. . . . . . . . . 9 7 9 9 4 4

. . . . . . . . . 8 7 8 3 1 1

. . . . . . . . . -------------

. . . . . . . . . 1 0 1 6 3 3 1

. . . . . . . . . 1 0 0 3 7 8 4

. . . . . . . . . ---------------

. . . . . . . . . . . 1 2 5 4 7 3

. . . . . . . . . . . 1 2 5 4 7 3

How......? I had no clue where to even start on this one. What was your process for finding the numbers?

Link to comment
Share on other sites

  • 0

Let's see...using VWXY7Z and AB7CE and numbering the steps 1 through 5. (A * VWXY7Z = step 1)

1. V has to be 1 and B and C have to be 8 or 9. That is the only way VWXY7Z * 7 = 6 digits and VWXY7Z * B (or C) = 7 digits.

2. Step 3 has to start with 9 and 8 or 8 and 7 which lead me to find VWXY7Z = 124Y7Z or 125Y7Z for small sets of Y. I ended up finding 12547Z fit using step 4's second number as a template.

3. C = 8 was then the only only that would work for step 4

4. Looked at B = 8 or 9 for step 2 can't remember what eliminated B = 9

5. Once I knew what the third digit of the first number in step 2 was I figured out what the third digit of the second number in step 1 would need to be. Only A = 3 or 5 would give me the number I wanted.

6. Looking at 125470 * 38780 and 125479 * 38789 eliminated A= 3

Then it was trial and error for Z and D

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Answer this question...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

Loading...
 Share

  • Recently Browsing   0 members

    • No registered users viewing this page.
×
×
  • Create New...