This puzzle is inspired by posted by bonanova.
Again we work on a hexagonal tiling of a plane, and the question is about
possibility of covering some shape with triminoes.
Trimino is a "triangle" formed by three unit hexagons sharing common vertex.
The shape to cover is defined as follows:
Let's pick a unit hexagon and call it H1.
Now we recursively define Hn+1 as a sum of Hn and all unit hexagons adjacent to Hn.
So basically Hn is a "hexagon" with side of length n (unit hexagons).
Let Dn be Hn with one unit hexagon at it's center removed.
So, can you cover D2015 with triminoes?