Jump to content
BrainDen.com - Brain Teasers
  • 0

Binary lock



There are n binary levers: each lever can be in position 0 or position 1.
Exactly one out of 2n possible combinations of levers opens the lock.
The lock opens immediately as soon as each lever is in proper position.
Changing position of one lever is called a move.
Suppose all levers are initially in position 0.
What is the minimal number of moves that guarantees opening the lock?
In other words: how many moves are required to test each position of levers (the worst case scenario)?

Can you also describe the optimal procedure of moving the levers?

Link to comment
Share on other sites

4 answers to this question

Recommended Posts

  • 0

This is correct, Pickett. No "extra" moves are required (obviously we cannot do better, since there are 2n-1 combinations to test).
Comparing this problem to Towers of Hanoi looks like a good insight to me, since both problems are naturally defined with exactly the same recurrence.
I've played a game today where I had to brute-force such lock. I was just testing subsequent binary numbers (thinking of levers as bits), hence I made more moves then optimal. Even after I gave this problem some thoughts, I'd still be afraid to use "optimal procedure", since I feel that the gain in speed is not worth the risk of making a mistake and starting over.


Edited by witzar
Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Answer this question...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.


  • Recently Browsing   0 members

    • No registered users viewing this page.
  • Create New...