Again we work on a hexagonal tiling of a plane, and the question is about
possibility of covering some shape with triminoes.
Trimino is a "triangle" formed by three unit hexagons sharing common vertex.
The shape to cover is defined as follows:
Let's pick a unit hexagon and call it H_{1}.
Now we recursively define H_{n+1} as a sum of H_{n} and all unit hexagons adjacent to H_{n}.
So basically H_{n} is a "hexagon" with side of length n (unit hexagons).
Let D_{n} be H_{n} with one unit hexagon at it's center removed.
So, can you cover D_{2015} with triminoes?
This puzzle is inspired by posted by bonanova.
Edited by rookie1jaAgain we work on a hexagonal tiling of a plane, and the question is about
possibility of covering some shape with triminoes.
Trimino is a "triangle" formed by three unit hexagons sharing common vertex.
The shape to cover is defined as follows:
Let's pick a unit hexagon and call it H_{1}.
Now we recursively define H_{n+1} as a sum of H_{n} and all unit hexagons adjacent to H_{n}.
So basically H_{n} is a "hexagon" with side of length n (unit hexagons).
Let D_{n} be H_{n} with one unit hexagon at it's center removed.
So, can you cover D_{2015} with triminoes?
Share this post
Link to post
Share on other sites