Peter and Paul, who are neighbors, each threw a party last Friday. Bad scheduling, to be sure, but that's life. Even worse, their guest lists were identical: all 100 of their friends were sent invitations to both parties. When guests arrived, the happy sounds of those already present could be heard through the two open doors, and the old phrase "the more the merrier" figured in their choice of which party to attend: If at any point there were a people present at Peter's party and b people present at Paul's party, the next guest would join Peter with probability a/(a+b) and join Paul with probability b/(a+b).
To illustrate: When the first guest arrived only the two hosts were present. (a = b =1.) So that choice was a tossup, and let's say that the first guest chose Peter's party. (a = 2; b =1.) Now the second guest would follow suit, with probability 2/3, or choose Paul's party, with probability 1/3. And so on, until all 100 guests arrived.
What is the expected number of guests at the less-attended party?
Question
bonanova
Peter and Paul, who are neighbors, each threw a party last Friday. Bad scheduling, to be sure, but that's life. Even worse, their guest lists were identical: all 100 of their friends were sent invitations to both parties. When guests arrived, the happy sounds of those already present could be heard through the two open doors, and the old phrase "the more the merrier" figured in their choice of which party to attend: If at any point there were a people present at Peter's party and b people present at Paul's party, the next guest would join Peter with probability a/(a+b) and join Paul with probability b/(a+b).
To illustrate: When the first guest arrived only the two hosts were present. (a = b =1.) So that choice was a tossup, and let's say that the first guest chose Peter's party. (a = 2; b =1.) Now the second guest would follow suit, with probability 2/3, or choose Paul's party, with probability 1/3. And so on, until all 100 guests arrived.
What is the expected number of guests at the less-attended party?
Edited by bonanovaGive probability examples
Link to comment
Share on other sites
9 answers to this question
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.