Jump to content

Welcome to BrainDen.com - Brain Teasers Forum

Welcome to BrainDen.com - Brain Teasers Forum. Like most online communities you must register to post in our community, but don't worry this is a simple free process. To be a part of BrainDen Forums you may create a new account or sign in if you already have an account.
As a member you could start new topics, reply to others, subscribe to topics/forums to get automatic updates, get your own profile and make new friends.

Of course, you can also enjoy our collection of amazing optical illusions and cool math games.

If you like our site, you may support us by simply clicking Google "+1" or Facebook "Like" buttons at the top.
If you have a website, we would appreciate a little link to BrainDen.

Thanks and enjoy the Den :-)
Guest Message by DevFuse

- - - - -

Line vs Line segment paradox

  • Please log in to reply
3 replies to this topic



    Senior Member

  • Members
  • PipPipPipPip
  • 1826 posts
  • Gender:Female

Posted 24 February 2014 - 02:45 PM

Suppose the point on a line segment is in a one to one correspondance relationship with a line.  Both possess infinite points and so should fullly map onto each other however the line segment is of finite length while the line is of infinite length.

  • 0

#2 joshuagenes


    Junior Member

  • Members
  • PipPip
  • 22 posts

Posted 08 April 2014 - 07:39 AM

The answer is that both the line and the line segments are made out of discrete relationships. Discrete relationships are container keeping things in and keeping things out. They also are objects. Being that a line is created from them distance is measured by the degree of separation the discrete relationships provide. Also being containers that contain each other they eventually contain themselves in fractal form so the line segment can be both discrete and of finite length AND infinite as it is fractally manifest you simply need a perspective on the combined object that contains both perspectives. This provides a easy and truthful resolution to this paradox.

  • 0

#3 bonanova



  • Moderator
  • PipPipPipPip
  • 6141 posts
  • Gender:Male
  • Location:New York

Posted 03 May 2014 - 12:08 AM

Consider the line segment [0, 1] and the entire real axis.

Both have the cardinality C of the reals.


f(x) = 1 / [ x (x-1) ] is a bijection.


This is a paradox only if real numbers themselves are paradoxical.

  • 0

Vidi vici veni.

#4 phil1882


    Senior Member

  • Members
  • PipPipPipPip
  • 557 posts

Posted 23 May 2014 - 02:26 PM

i like listening to a math teacher who argues that the real numbers are paradoxical.

the problem with them, say a number like square root 2, is that they require an infinite amount of information to "store". we can never know exactly what the square root of two is, we can only have an aproximate answer based on formulas.

consider the following irrational number. you take a list of intinite yes or no questions, and sort them alphabetically. then you express the answer to each question as a number in binary, containing a zero or no or one for yes.  then you can answer an infinite number of questions just by knowing the position of the question in the sqeuence.

  • 0

0 user(s) are reading this topic

0 members, 0 guests, 0 anonymous users