Jump to content
BrainDen.com - Brain Teasers
  • 0


bonanova
 Share

Question

11 answers to this question

Recommended Posts

  • 0
.....___X7X0X

1XX /XXXXXXXX

.....XXXX

.......XXX

.......XXX

.......1XXX

....... XXX

.........XXXX

.........XXXX

.........----

.....___(8or9)7X0(8or9)

1XX /1XXXXXXX

.....1XXX

.......(8or9)XXX

.......(7or8)XX

.......1XXX

....... XXX

.........1XXX

.........1XXX

.........----

Link to comment
Share on other sites

  • 0

Thanks I should have gotten the 1s on the 4 digit numbers

:) . On the 8's or 9's on the top number, wouldn't anything 5 or higher be acceptable?
.....___(8or9)7X0(8or9)

1XX /1XXXXXXX

.....1XXX

.......(8or9)XXX

.......(7or8)XX

.......1XXX

....... XXX

.........1XXX

.........1XXX

.........----

:)

Link to comment
Share on other sites

  • 0

:)

Thanks I should have gotten the 1s on the 4 digit numbers
:) . On the 8's or 9's on the top number, wouldn't anything 5 or higher be acceptable?

you know that a 7 yields a product of three digits, so to get a product of 4 digits you need an 8 or 9

Edited by Cherry Lane
Link to comment
Share on other sites

  • 0

.....___L7MNO

ABC /DEFGHIJK DEFG = 1099-1251, ABC=112-128

.....XXXX LxABC value is 1000-1152

.......XXX DEFG-XXXX value is 884-999

.......XXX 7xABC value is 784-899

.......XXXX first digit = 1, >1000

....... XXX M*ABC=3 digit, >899

.........XXXX

.........XXXX

.........----

1) 7 x ABC = 3 digits with 3 digit remainder so 101 < ABC < 128

2) ABC *L is 4 digits so L = 8 or 9 and 112 <ABC<128

3) using ABC * 8 or 9 get range of 1000-1152 [1116] for first XXXX

4) DEFG – XXXX <=99 so DEFG = 1099-1251 [1215]

5) M*ABC = 3 digit, >899 (to leave 2 digit remainder) so M = 8

6) 8*ABC 3 digit limits 112<ABC<124 [RECALC 2]

7)

8)

.....___L78NO

1BC /1EFGHIJK DEFG = 1099-1215, ABC=112-124

.....1XXX LxABC value is value is 1000-1116

.......XXH DEFG-XXXX value is 884-968

.......XXX 7xABC value is value is 784-868

.......1XXI first digit = 1, >1000

....... XXX M*ABC=3 digit, >899

.........XXJK

.........XXJK NO*ABC = 4 digits

.........----

What I've gotten so far... fun but very time consuming puzzle

<_<

Link to comment
Share on other sites

  • 0

I haven’t given up on this! I looked at it again this morning, as a wake-me-up, and here’s where I ended up:

.....___X7XXX

XXX /XXXXXXXX

.....XXXX

.......XXX

.......XXX

.......XXXX

........XXX

.........XXXX we know from this line the fourth digit of quotient =0

.........XXXX

.........----

.....___A7H0M

BXX /CXXXXXXX ...... 7 x BXX yields a three-digit number (FXX), so

.....DXXX .......... B = 1, F = 7,8,or 9

.......EXX ......... A x BXX = DXXX (4 digits), so A > 7, D=1 and C=1

.......FXX ......... also, MxBXX = LXXX (4 digits), so M > 7 L=1

.......GXXX ........ (also K=1)

........JXX ........ EXX – FXX = GXX

.........KXXX ...... E>F, F=7 or 8, E=8 or 9

.........LXXX ...... GXXX-JXX=KX, so G=1

.........----

.....___A7H0M

1XX /1XXXXXXX ..... 1XXX-JXX=1X (2 digits), so J=9

.....1XXX ......... Hx1XX=JXX=9XX > FXX (above, 7<=F<=8)

.......EXX ........ so H=8, A=9, M=9

.......FXX

.......1XXX

........JXX

.........1XXX

.........1XXX

.........----

.....___97809

1XX /1XXXXXXX ..... 8x1XX = 9XX

.....1XXX ......... 112<1XX<125

.......EXX

.......FXX

.......1XXX

........9XX

.........1XXX

.........1XXX

.........----

After this, I don’t know what to do except trial-and-error for the divisor. 9x1XX must yield a remainder (EX) large enough that EXX-FXX>=100. Using the range 112<1XX<125, the only one that works is 124. So:

.....___97809

124 /12128316

.....1116

.......986

.......868

.......1003

........992

.........1116

.........1116

.........----

But I’d love for some help in getting this last bit logically!

Link to comment
Share on other sites

  • 0
I haven’t given up on this! I looked at it again this morning, as a wake-me-up, and here’s where I ended up:

.....___X7XXX

XXX /XXXXXXXX

.....XXXX

.......XXX

.......XXX

.......XXXX

........XXX

.........XXXX we know from this line the fourth digit of quotient =0

.........XXXX

.........----

.....___A7H0M

BXX /CXXXXXXX ...... 7 x BXX yields a three-digit number (FXX), so

.....DXXX .......... B = 1, F = 7,8,or 9

.......EXX ......... A x BXX = DXXX (4 digits), so A > 7, D=1 and C=1

.......FXX ......... also, MxBXX = LXXX (4 digits), so M > 7 L=1

.......GXXX ........ (also K=1)

........JXX ........ EXX – FXX = GXX

.........KXXX ...... E>F, F=7 or 8, E=8 or 9

.........LXXX ...... GXXX-JXX=KX, so G=1

.........----

.....___A7H0M

1XX /1XXXXXXX ..... 1XXX-JXX=1X (2 digits), so J=9

.....1XXX ......... Hx1XX=JXX=9XX > FXX (above, 7<=F<=8)

.......EXX ........ so H=8, A=9, M=9

.......FXX

.......1XXX

........JXX

.........1XXX

.........1XXX

.........----

.....___97809

1XX /1XXXXXXX ..... 8x1XX = 9XX

.....1XXX ......... 112<1XX<125

.......EXX

.......FXX

.......1XXX

........9XX

.........1XXX

.........1XXX

.........----

After this, I don’t know what to do except trial-and-error for the divisor. 9x1XX must yield a remainder (EX) large enough that EXX-FXX>=100. Using the range 112<1XX<125, the only one that works is 124. So:

.....___97809

124 /12128316

.....1116

.......986

.......868

.......1003

........992

.........1116

.........1116

.........----

But I’d love for some help in getting this last bit logically!

Gold star [and red badge of courage] for CL. ;)

This problem might be like the extra-tough SUDOKU problems that do require some trial and error.

You bracketed the answer to a searchable size, and that might be the best you can do.

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Answer this question...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

Loading...
 Share

  • Recently Browsing   0 members

    • No registered users viewing this page.
×
×
  • Create New...