An ant walks East a distance of 100 feet. Next he walks north a distance of 50 feet. Then west for 25 feet, and so on. He keeps turning left and halving his previous distance. We know this geometric series converges. His path encloses a single point - the only point to which he will come arbitrarily close.
One question that might be asked involves an infinite series:
What is his total path length as he approaches the limit point?
A more interesting question can be answered without a lot of math.
What is the inclination [angle] from due east, of the line drawn back to his starting point?
There are several ways to determine the second question.
A coveted bonanova gold star will be awarded to the most elegant solution.
Question
bonanova
An ant walks East a distance of 100 feet. Next he walks north a distance of 50 feet. Then west for 25 feet, and so on. He keeps turning left and halving his previous distance. We know this geometric series converges. His path encloses a single point - the only point to which he will come arbitrarily close.
One question that might be asked involves an infinite series:
What is his total path length as he approaches the limit point?
A more interesting question can be answered without a lot of math.
What is the inclination [angle] from due east, of the line drawn back to his starting point?
There are several ways to determine the second question.
A coveted bonanova gold star will be awarded to the most elegant solution.
Enjoy
Link to comment
Share on other sites
4 answers to this question
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.