bonanova Posted January 23, 2013 Report Share Posted January 23, 2013 You are given n > 0 of each of the standard denomination US coins: 1¢, 5¢, 10¢, 25¢, 50¢, $1. Your task is then to select from them a set of n coins whose total value is exactly $1. Clearly, if n=1, you can do this by selecting the $1 coin. If n=2 you select the two half-dollar coins. But if n > 100, then every set of n coins (e.g. all the pennies) will have a total that is too large. What is the smallest n such that it is impossible to select n coins that make exactly a dollar? Quote Link to comment Share on other sites More sharing options...
0 markdane22 Posted January 23, 2013 Report Share Posted January 23, 2013 (edited) As this question was getting no answers, I have cheated and made the program :------------So I think 77 is the answer ------- Number of coins: 1 => 1$*1 + 50c*0 + 25c*0 + 10c*0 + 5c*0 + 1c*0 Number of coins: 2 => 1$*0 + 50c*2 + 25c*0 + 10c*0 + 5c*0 + 1c*0 Number of coins: 3 => 1$*0 + 50c*1 + 25c*2 + 10c*0 + 5c*0 + 1c*0 Number of coins: 4 => 1$*0 + 50c*0 + 25c*4 + 10c*0 + 5c*0 + 1c*0 Number of coins: 5 => 1$*0 + 50c*1 + 25c*1 + 10c*2 + 5c*1 + 1c*0 Number of coins: 6 => 1$*0 + 50c*1 + 25c*1 + 10c*1 + 5c*3 + 1c*0 Number of coins: 7 => 1$*0 + 50c*1 + 25c*1 + 10c*0 + 5c*5 + 1c*0 Number of coins: 8 => 1$*0 + 50c*1 + 25c*0 + 10c*3 + 5c*4 + 1c*0 Number of coins: 9 => 1$*0 + 50c*1 + 25c*1 + 10c*2 + 5c*0 + 1c*5 Number of coins: 10 => 1$*0 + 50c*1 + 25c*1 + 10c*1 + 5c*2 + 1c*5 Number of coins: 11 => 1$*0 + 50c*1 + 25c*1 + 10c*0 + 5c*4 + 1c*5 Number of coins: 12 => 1$*0 + 50c*1 + 25c*0 + 10c*3 + 5c*3 + 1c*5 Number of coins: 13 => 1$*0 + 50c*1 + 25c*0 + 10c*2 + 5c*5 + 1c*5 Number of coins: 14 => 1$*0 + 50c*1 + 25c*1 + 10c*1 + 5c*1 + 1c*10 Number of coins: 15 => 1$*0 + 50c*1 + 25c*1 + 10c*0 + 5c*3 + 1c*10 Number of coins: 16 => 1$*0 + 50c*1 + 25c*0 + 10c*3 + 5c*2 + 1c*10 Number of coins: 17 => 1$*0 + 50c*1 + 25c*0 + 10c*2 + 5c*4 + 1c*10 Number of coins: 18 => 1$*0 + 50c*1 + 25c*1 + 10c*1 + 5c*0 + 1c*15 Number of coins: 19 => 1$*0 + 50c*1 + 25c*1 + 10c*0 + 5c*2 + 1c*15 Number of coins: 20 => 1$*0 + 50c*1 + 25c*0 + 10c*3 + 5c*1 + 1c*15 Number of coins: 21 => 1$*0 + 50c*1 + 25c*0 + 10c*2 + 5c*3 + 1c*15 Number of coins: 22 => 1$*0 + 50c*1 + 25c*0 + 10c*1 + 5c*5 + 1c*15 Number of coins: 23 => 1$*0 + 50c*1 + 25c*1 + 10c*0 + 5c*1 + 1c*20 Number of coins: 24 => 1$*0 + 50c*1 + 25c*0 + 10c*3 + 5c*0 + 1c*20 Number of coins: 25 => 1$*0 + 50c*1 + 25c*0 + 10c*2 + 5c*2 + 1c*20 Number of coins: 26 => 1$*0 + 50c*1 + 25c*0 + 10c*1 + 5c*4 + 1c*20 Number of coins: 27 => 1$*0 + 50c*1 + 25c*1 + 10c*0 + 5c*0 + 1c*25 Number of coins: 28 => 1$*0 + 50c*0 + 25c*3 + 10c*0 + 5c*0 + 1c*25 Number of coins: 29 => 1$*0 + 50c*1 + 25c*0 + 10c*2 + 5c*1 + 1c*25 Number of coins: 30 => 1$*0 + 50c*1 + 25c*0 + 10c*1 + 5c*3 + 1c*25 Number of coins: 31 => 1$*0 + 50c*1 + 25c*0 + 10c*0 + 5c*5 + 1c*25 Number of coins: 32 => 1$*0 + 50c*0 + 25c*2 + 10c*0 + 5c*5 + 1c*25 Number of coins: 33 => 1$*0 + 50c*1 + 25c*0 + 10c*2 + 5c*0 + 1c*30 Number of coins: 34 => 1$*0 + 50c*1 + 25c*0 + 10c*1 + 5c*2 + 1c*30 Number of coins: 35 => 1$*0 + 50c*1 + 25c*0 + 10c*0 + 5c*4 + 1c*30 Number of coins: 36 => 1$*0 + 50c*0 + 25c*2 + 10c*0 + 5c*4 + 1c*30 Number of coins: 37 => 1$*0 + 50c*0 + 25c*1 + 10c*3 + 5c*3 + 1c*30 Number of coins: 38 => 1$*0 + 50c*1 + 25c*0 + 10c*1 + 5c*1 + 1c*35 Number of coins: 39 => 1$*0 + 50c*1 + 25c*0 + 10c*0 + 5c*3 + 1c*35 Number of coins: 40 => 1$*0 + 50c*0 + 25c*2 + 10c*0 + 5c*3 + 1c*35 Number of coins: 41 => 1$*0 + 50c*0 + 25c*1 + 10c*3 + 5c*2 + 1c*35 Number of coins: 42 => 1$*0 + 50c*1 + 25c*0 + 10c*1 + 5c*0 + 1c*40 Number of coins: 43 => 1$*0 + 50c*1 + 25c*0 + 10c*0 + 5c*2 + 1c*40 Number of coins: 44 => 1$*0 + 50c*0 + 25c*2 + 10c*0 + 5c*2 + 1c*40 Number of coins: 45 => 1$*0 + 50c*0 + 25c*1 + 10c*3 + 5c*1 + 1c*40 Number of coins: 46 => 1$*0 + 50c*0 + 25c*1 + 10c*2 + 5c*3 + 1c*40 Number of coins: 47 => 1$*0 + 50c*1 + 25c*0 + 10c*0 + 5c*1 + 1c*45 Number of coins: 48 => 1$*0 + 50c*0 + 25c*2 + 10c*0 + 5c*1 + 1c*45 Number of coins: 49 => 1$*0 + 50c*0 + 25c*1 + 10c*3 + 5c*0 + 1c*45 Number of coins: 50 => 1$*0 + 50c*0 + 25c*1 + 10c*2 + 5c*2 + 1c*45 Number of coins: 51 => 1$*0 + 50c*1 + 25c*0 + 10c*0 + 5c*0 + 1c*50 Number of coins: 52 => 1$*0 + 50c*0 + 25c*2 + 10c*0 + 5c*0 + 1c*50 Number of coins: 53 => 1$*0 + 50c*0 + 25c*0 + 10c*3 + 5c*5 + 1c*45 Number of coins: 54 => 1$*0 + 50c*0 + 25c*1 + 10c*2 + 5c*1 + 1c*50 Number of coins: 55 => 1$*0 + 50c*0 + 25c*1 + 10c*1 + 5c*3 + 1c*50 Number of coins: 56 => 1$*0 + 50c*0 + 25c*1 + 10c*0 + 5c*5 + 1c*50 Number of coins: 57 => 1$*0 + 50c*0 + 25c*0 + 10c*3 + 5c*4 + 1c*50 Number of coins: 58 => 1$*0 + 50c*0 + 25c*1 + 10c*2 + 5c*0 + 1c*55 Number of coins: 59 => 1$*0 + 50c*0 + 25c*1 + 10c*1 + 5c*2 + 1c*55 Number of coins: 60 => 1$*0 + 50c*0 + 25c*1 + 10c*0 + 5c*4 + 1c*55 Number of coins: 61 => 1$*0 + 50c*0 + 25c*0 + 10c*3 + 5c*3 + 1c*55 Number of coins: 62 => 1$*0 + 50c*0 + 25c*0 + 10c*2 + 5c*5 + 1c*55 Number of coins: 63 => 1$*0 + 50c*0 + 25c*1 + 10c*1 + 5c*1 + 1c*60 Number of coins: 64 => 1$*0 + 50c*0 + 25c*1 + 10c*0 + 5c*3 + 1c*60 Number of coins: 65 => 1$*0 + 50c*0 + 25c*0 + 10c*3 + 5c*2 + 1c*60 Number of coins: 66 => 1$*0 + 50c*0 + 25c*0 + 10c*2 + 5c*4 + 1c*60 Number of coins: 67 => 1$*0 + 50c*0 + 25c*1 + 10c*1 + 5c*0 + 1c*65 Number of coins: 68 => 1$*0 + 50c*0 + 25c*1 + 10c*0 + 5c*2 + 1c*65 Number of coins: 69 => 1$*0 + 50c*0 + 25c*0 + 10c*3 + 5c*1 + 1c*65 Number of coins: 70 => 1$*0 + 50c*0 + 25c*0 + 10c*2 + 5c*3 + 1c*65 Number of coins: 71 => 1$*0 + 50c*0 + 25c*0 + 10c*1 + 5c*5 + 1c*65 Number of coins: 72 => 1$*0 + 50c*0 + 25c*1 + 10c*0 + 5c*1 + 1c*70 Number of coins: 73 => 1$*0 + 50c*0 + 25c*0 + 10c*3 + 5c*0 + 1c*70 Number of coins: 74 => 1$*0 + 50c*0 + 25c*0 + 10c*2 + 5c*2 + 1c*70 Number of coins: 75 => 1$*0 + 50c*0 + 25c*0 + 10c*1 + 5c*4 + 1c*70 Number of coins: 76 => 1$*0 + 50c*0 + 25c*1 + 10c*0 + 5c*0 + 1c*75 Number of coins: 77 => can't find any solution Number of coins: 78 => 1$*0 + 50c*0 + 25c*0 + 10c*2 + 5c*1 + 1c*75 Number of coins: 79 => 1$*0 + 50c*0 + 25c*0 + 10c*1 + 5c*3 + 1c*75 Number of coins: 80 => 1$*0 + 50c*0 + 25c*0 + 10c*0 + 5c*5 + 1c*75 Number of coins: 81 => can't find any solution Number of coins: 82 => 1$*0 + 50c*0 + 25c*0 + 10c*2 + 5c*0 + 1c*80 Number of coins: 83 => 1$*0 + 50c*0 + 25c*0 + 10c*1 + 5c*2 + 1c*80 Number of coins: 84 => 1$*0 + 50c*0 + 25c*0 + 10c*0 + 5c*4 + 1c*80 Number of coins: 85 => can't find any solution Number of coins: 86 => can't find any solution Number of coins: 87 => 1$*0 + 50c*0 + 25c*0 + 10c*1 + 5c*1 + 1c*85 Number of coins: 88 => 1$*0 + 50c*0 + 25c*0 + 10c*0 + 5c*3 + 1c*85 Number of coins: 89 => can't find any solution Number of coins: 90 => can't find any solution Number of coins: 91 => 1$*0 + 50c*0 + 25c*0 + 10c*1 + 5c*0 + 1c*90 Number of coins: 92 => 1$*0 + 50c*0 + 25c*0 + 10c*0 + 5c*2 + 1c*90 Number of coins: 93 => can't find any solution Number of coins: 94 => can't find any solution Number of coins: 95 => can't find any solution Number of coins: 96 => 1$*0 + 50c*0 + 25c*0 + 10c*0 + 5c*1 + 1c*95 Number of coins: 97 => can't find any solution Number of coins: 98 => can't find any solution Number of coins: 99 => can't find any solution Number of coins: 100 => 1$*0 + 50c*0 + 25c*0 + 10c*0 + 5c*0 + 1c*100 Edited January 23, 2013 by markdane22 Quote Link to comment Share on other sites More sharing options...
0 bonanova Posted January 23, 2013 Author Report Share Posted January 23, 2013 Hi markdane, and welcome to the Den. That's the answer. Thanks for posting. Quote Link to comment Share on other sites More sharing options...
Question
bonanova
You are given n > 0 of each of the standard denomination US coins: 1¢, 5¢, 10¢, 25¢, 50¢, $1.
Your task is then to select from them a set of n coins whose total value is exactly $1.
Clearly, if n=1, you can do this by selecting the $1 coin. If n=2 you select the two half-dollar coins.
But if n > 100, then every set of n coins (e.g. all the pennies) will have a total that is too large.
What is the smallest n such that it is impossible to select n coins that make exactly a dollar?
Link to comment
Share on other sites
2 answers to this question
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.