Jump to content


Welcome to BrainDen.com - Brain Teasers Forum

Welcome to BrainDen.com - Brain Teasers Forum. Like most online communities you must register to post in our community, but don't worry this is a simple free process. To be a part of BrainDen Forums you may create a new account or sign in if you already have an account.
As a member you could start new topics, reply to others, subscribe to topics/forums to get automatic updates, get your own profile and make new friends.

Of course, you can also enjoy our collection of amazing optical illusions and cool math games.

If you like our site, you may support us by simply clicking Google "+1" or Facebook "Like" buttons at the top.
If you have a website, we would appreciate a little link to BrainDen.

Thanks and enjoy the Den :-)
Guest Message by DevFuse
 

Photo
- - - - -

Pandora's Box I.


  • This topic is locked This topic is locked
20 replies to this topic

#11 Ruin

Ruin

    Newbie

  • Members
  • Pip
  • 1 posts

Posted 08 November 2007 - 11:48 AM

Now this is alot of reading, but I tried to explain this as best as I could
through my method, then taking fosley's table and putting it up against an inverse
table I did while explaining them.

I got my answer by working it in the form of an If statement.
It's a bit different than the actual programming lauguage since
I don't believe there is anything with .Statement as an ending...
If you read think about it, this does work since the lines coding
are just line of logic. It may be long, but I like If Statements.

goldenBox.Statement = "The ring is in this box"
		silverBox.Statement = "The ring is not in this box"
		leadBox.Statement = "The ring is not in the golden box"
		trueStatements.Statement = False
		oneTrue.Statement = False ' Gets set to true if first If
									 ' statement doesn't work. 

	If trueStatements.statements = False then
		goldenBox.Statement = False
		silverBox.Statement = False
		leadBox.Statement  = False
			' But, if leadBox.Statement is False
			' then goldenBox.Statement would be True.
			' Yet that would cause a conflict
			' if all statements are False so that
			' means one satatement is True.
		MessageBox.Show("This is improbable.", "Logic Error",
		MessageBoxButtons.OK, MessageBoxIcon.Error)

		oneTrue.Statement = True
	End If

	If oneTrue.statement = True then
		If goldenBox.Statement = True Then
			silverBox.Statement = False
			leadBox.Statement = False
				' This is not possible because if
				' silverBox.Statement is False then
				' the ring would be in the Silver Box, but
				' that would contradict the Golden Box
				' which should be true. So Golden Box does
				' not equal True.
				' Error!
		ElseIf silverBox.Statement = True Then
			goldenBox.Statement = False
			leadBox.Statement = False
				' Using the same logic as the Golden Box
				' If the Golden Box is lying then
				' the ring is not in the Golden Box. Which
				' would be backed up by the Lead Box's claim
				' that the Golden Box doesn't contain the ring
				' IF the Lead Box's statement wasn't flagged as
				' False. Since it is, it throws up the same
				' conflict as the Golden Box. The Lead Box being
				' False would tell us that the Golden Box would
				' have the ring. Therefor the Silver Box does
				' not equal True.
				' Again Error!
		ElseIf leadBox.Statement = True Then
			goldenBox.Statement = False
			silverBox.Statement = False
				' If the Lead Box is truthful and the Golden
				' Boxes as well as the Silver Boxes statements
				' would be false. If Golden's statemtent is false,
				' the ring would either be in the Silver or Lead
				' boxes. If Silver's Statement is false then the
				' ring would be in there and since The Lead Box is
				' used against the Golden Box to tell us that the Golden
				' Box is not truthful, it makes the Silver Box the
				' box with the ring by denying the claim the Golden Box
				' had on the ring.
		End If
	End If

-----------------------------------------------------------------------------------------


Truth Table: "If Ring Was In Box 'X'"
	(Could also be called "If Box 'X' Is Truthful")
	(This is fosley's Truth Table Shortened.	  )

	_______________________________________________
	|	 	 | Inscriptions					  |
	|---------------------------------------------|
	| Golden  | The ring is in this box.		   |
	| Silver  | The Ring is Not in this box.	   |
	| Lead	| The Ring is not in the golden box.|
	-----------------------------------------------
	VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV

	--------------------------------------------------------------------
	|		|   Golden	|	Silver   |	Lead	 | Tally | Tally |
	|		|	Truth	|	Truth	|	Truth	| Truth | False |
	|-------------------------------------------------------------------
	| Golden |	 T	   |	   T	 |	   F	 |   2   |   1   |
	|-------------------------------------------------------------------
	| Silver |	 F	   |	   F	 |	   T	 |   1   |   2   |
	|-------------------------------------------------------------------
	| Lead   |	 F	   |	   T	 |	   T	 |   2   |   1   |
	--------------------------------------------------------------------
	----------------------------------------------------------------
	| Note: Table above refers to If Box X's Inscription (The Boxes|
	| in the Columns) is true would the ring be in Box R (The Boxes|
	| in the Rows). But you already knew that. Just clarifying it. |
	----------------------------------------------------------------

	_______________________________________________
	|	 	 | Inscriptions					  |
	|---------------------------------------------|
	| Golden  | The ring is in this box.		   |
	| Silver  | The Ring is Not in this box.	   |
	| Lead	| The Ring is not in the golden box.|
	-----------------------------------------------
	VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV

Truth Table: "If Box 'X' is Lying"
	--------------------------------------------------------------------
	|		|   Golden	|	Silver   |	Lead	 | Tally | Tally |
	|		|	Lying	|	Lying	|	Lying	| Truth | False |
	|-------------------------------------------------------------------
	| Golden |	  F	  |	  F	  |	  T	  |   1   |   2   |
	|-------------------------------------------------------------------
	| Silver |	  T	  |	  T	  |	  F	  |   2   |   1   |
	|-------------------------------------------------------------------
	| Lead   |	  T	  |	  F	  |	  F	  |   1   |   2   |
	--------------------------------------------------------------------
	-----------------------------------------------------------------------
	| Note: Table above is saying if the box in the column is lying what  |
	| boxes could have the ring in it. It's just the opposite of the	  |
	| previous Truth Table. Since the results came back inverse of the	|
	| first table we know that we didn't screw up somewhere along the way.|
	| THUS...																	|
	-----------------------------------------------------------------------
Answer!: The Silver Box has the ring!
  • 0

#12 mauibaby93

mauibaby93

    Newbie

  • Members
  • Pip
  • 2 posts

Posted 22 November 2007 - 11:10 PM

Correct me if I'm wrong, but I think I did the logic corectly and this is my first time solving a puzle here, yay! (It's in the silver box)

The question states that either one or none of the statements are true.
If only one of the statements are true it would be as followed:
If the gold statement was true it would be in the gold box, but
it would make the silver boxes statment false which would make it in that box too,
and there is only one ring so that can't be true.

If only the silver box was true, it wouldn't be in the silver box, but
the gold satement would be false so it can't be in there, and
the lead statement is false which means that it is in the gold box, but we already found out it's not, so that can't be true.

If only the lead box was true, it wouldn't be in the gold box(stated by the lead box and gold box) which would put it in the silver box.
__________________________________________________________________________
Now if all the statements were false
It would not be in the gold box
It would be in the silver box
But then it would also be in the gold box, so one has to be true to make this whole puzle work.

  • 0

#13 deven.cay

deven.cay

    Newbie

  • Members
  • Pip
  • 8 posts

Posted 11 December 2007 - 12:43 AM

wow congrats to everyone who got it! i had a gut feeling it was in the silver box, but i misread. i didnt catch the fact that only one or none were true. you all were very confusing by the way but the one before me ^ made sense. thanks!
  • 0

#14 Snowball

Snowball

    Newbie

  • Members
  • Pip
  • 7 posts

Posted 29 January 2008 - 01:31 AM

um, shouldnt it be lead box? since either only 1 lie, or all of the boxes lie. so if gold is lying then its in the lead box because silver says : the ring is not in this box. if they were all lying, then the puzzle would be unsolvable because lead would say the ring is in golden box and golden would say its not


no, because its not that "since either only one lie or all of the boxes lie" it's either "all the boxes lie or only one of them tells the truth". however the answer could still be the silver box.




motto
----------------------------------
most human flaws boil back down to having the IQ of a corn dog. :wacko:
  • 0

#15 Snowball

Snowball

    Newbie

  • Members
  • Pip
  • 7 posts

Posted 29 January 2008 - 01:33 AM

W00t i solve it... kinda easy.. isnt it the silver box since both the silver and gold box are lying and the lead box is telling the truth


er...well..all the extra stuff besides the words really confused me....what? :(
  • 0

#16 rmorton

rmorton

    Newbie

  • Members
  • Pip
  • 1 posts

Posted 31 January 2008 - 07:16 PM

:rolleyes: Duh, the only possible answer is that the one true statement is that the ring is not in the Golden box, and that it must therefore be in the Silver box.

Pandora's Box I. - Back to the Logic Problems
Once upon a time, there was a girl named Pandora, who wanted a bright groom so she made up a few logic problems for the wannabe. This is one of them.
Based upon the inscriptions on the boxes (none or just one of them is true), choose one box where the wedding ring is hidden.

Golden box
The ring is in this box.

Silver box
The ring is not in this box.

Lead box
The ring is not in the golden box.


Spoiler for Solution


  • 0

#17 Mihir

Mihir

    Newbie

  • Members
  • Pip
  • 14 posts

Posted 09 February 2008 - 07:45 PM

yeah i think it is in the silver box!!! <!-- s:lol: --><!-- s:lol: -->


Hmmm.... but the gold box lies (see below)
If the rest are true, ie.silver box doesn't have the ring and the gold box doesn't have the ring
then sure the lead box must have it....... :huh:
  • 0

#18 Chakriya

Chakriya

    Newbie

  • Members
  • Pip
  • 3 posts

Posted 06 March 2008 - 07:47 AM

It can't be that all the inscripts are lie.. so.. one inscript is telling the truth.. it's the Lead Box.. so the ring's in Silver one..
  • 0

#19 onetruth

onetruth

    Senior Member

  • Members
  • PipPipPipPip
  • 869 posts
  • Gender:Male

Posted 08 April 2008 - 12:17 AM

There is only one possible answer--it can't even be in none of the boxes.


Fosley only stated that the ring cannot be in none of the boxes. A double negative. So that conclusion was correct.
  • 0

#20 bincs33

bincs33

    Newbie

  • Members
  • Pip
  • 4 posts

Posted 08 April 2008 - 12:55 AM

I got it!!!!!
  • 0




0 user(s) are reading this topic

0 members, 0 guests, 0 anonymous users