This is not so much a puzzle as it is a request for some help. My uncle told me, "Smart men are those who can walk into a room and know that they are the dumb ones." So, with that in mind, I need some help with my geometry. (This isn't homework, I'm too old to be in school.)
Here are the criteria:
You are given two points, X and Y, and the direction in degrees, L, between X and Y, assuming up is 0 or 360. X is the center of a circle with a radius of .5 and the center of a square with sides of 1; Y is the center of a circle with a radius of 1 and the center of a square with sides of 2. The squares are tilted so that their sides are parallel with each other and a line connecting X and Y will bisect one side of each square. With this information, can you determine a formula to find the outside corners of the two squares, A B C and D. All points will lie in the upper-right quadrant of a two dimensional graph (all numbers will be positive). I've attached a picture for clarification.
Question
Guest
This is not so much a puzzle as it is a request for some help. My uncle told me, "Smart men are those who can walk into a room and know that they are the dumb ones." So, with that in mind, I need some help with my geometry. (This isn't homework, I'm too old to be in school.)
Here are the criteria:
You are given two points, X and Y, and the direction in degrees, L, between X and Y, assuming up is 0 or 360. X is the center of a circle with a radius of .5 and the center of a square with sides of 1; Y is the center of a circle with a radius of 1 and the center of a square with sides of 2. The squares are tilted so that their sides are parallel with each other and a line connecting X and Y will bisect one side of each square. With this information, can you determine a formula to find the outside corners of the two squares, A B C and D. All points will lie in the upper-right quadrant of a two dimensional graph (all numbers will be positive). I've attached a picture for clarification.
Link to comment
Share on other sites
1 answer to this question
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.