For the purposes of this puzzle, consider our old friend Albert to have the shape of a rectangular paralellepiped (when he was born the doctor remarked to his mother, I don't explain them, ma'am I just deliver them) just meaning a solid having (six) rectangular sides. At a recent physical exam, Albert was found to be 2 meters tall, 1 meter wide and .20 meters thick (front to back.) He maintains his geometric rectitude by never leaning forward when he walks or runs.

So anyway, Albert, alas, has found himself caught in a rainstorm that has 1000 raindrops / cubic meter that are falling at a constant speed of 10 meters / second, and he is 100 meters from his house.

Just how fast should Albert run to his house so as to encounter as few raindrops as possible?

## Question

## bonanova

For the purposes of this puzzle, consider our old friend Albert to have the shape of a rectangular paralellepiped (when he was born the doctor remarked to his mother, I don't explain them, ma'am I just deliver them) just meaning a solid having (six) rectangular sides. At a recent physical exam, Albert was found to be 2 meters tall, 1 meter wide and .20 meters thick (front to back.) He maintains his geometric rectitude by never leaning forward when he walks or runs.

So anyway, Albert, alas, has found himself caught in a rainstorm that has 1000 raindrops / cubic meter that are falling at a constant speed of 10 meters / second, and he is 100 meters from his house.

Just how fast should Albert run to his house so as to encounter as few raindrops as possible?

## Link to comment

## Share on other sites

## 4 answers to this question

## Recommended Posts

## Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.