Jump to content
BrainDen.com - Brain Teasers
  • 0

Factor completely over integer coefficients


Perhaps check it again
 Share

Question

1 answer to this question

Recommended Posts

  • 0

Most mathematically minded people know that if P(x) is a polynomial in x


then r is a root of P if and only if x-r is a factor of P(x). More generally,
replacing every instance of xn in P(x) by r results in creating the trivial
polynomial 0 if and only if xn-r is a factor of P(x).



Since we wish to annihilate that pesky constant term 1 when we replace things in P(x), it's natural to look to roots of -1 thusly:

Let P(x)=x7+x6+x5+x4+x3+x2+x+1. If x were equal to -1, then P(x) becomes
-1+1-1+1-1+1-1+1 which is identically 0. This means that x-(-1), i.e. x+1, is a factor.

Now, P(x)=x·(x2)3+(x2)3+x·(x2)2+(x2)2+x·(x2)+x2+x+1. So if x2 were to equal -1, then P(x)
would simplify to -x-1+x+1-x-1+x+1 which is 0. So x2-(-1), i.e. x2+1, is another factor.

For x3=-1, we get P(x)=x·(x3)2+(x3)2+x2·x3+x·x3+x3+x2+x+1 which simplifies to
-x+1-x2-x-1+x2+x+1 or 1-x which is not identically 0, so x3+1 is not a factor.

For x4=-1, we get P(x)=-x3-x2-x-1+x3+x2+x+1 which is identically 0, so x4+1 is another factor.

Since the product of these three factors is of degree 7, we are done.

So, x7+x6+x5+x4+x3+x2+x+1 = (x+1)·(x2+1)·(x4+1)
Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Answer this question...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

Loading...
 Share

  • Recently Browsing   0 members

    • No registered users viewing this page.
×
×
  • Create New...