A 'snooker' table (measuring 8 meters by 4m) with 4 'pockets' (measuring 0.5m and placed at diagonal slants in all 4 corners) contains 10 balls (each with a diameter of 0.25m) placed at the following coords:

2m,1m...(white ball)

...and red balls...

1m,5m... 2m,5m... 3m,5m

1m,6m... 2m,6m... 3m,6m

1m,7m... 2m,7m... 3m,7m

The white ball is then shot at a particular angle from 0 to 360 degrees (0 being north, and going clockwise). Just to make it clear, a ball is 'potted' if at least half of the ball is in area of the 'pocket'

Assuming the balls travel indefinitely (i.e. no loss of energy via friction, air resistance or collisions), answer the following:

a: What exact angle/s should you choose to ensure that all the balls are potted the quickest?

b: What is the minimum amount of contacts the balls can make with each other before they are all knocked in?

A 'snooker' table (measuring 8 meters by 4m) with 4 'pockets' (measuring 0.5m and placed at diagonal slants in all 4 corners) contains 10 balls (each with a diameter of 0.25m) placed at the following coords:

2m,1m...(white ball)

...and red balls...

1m,5m... 2m,5m... 3m,5m

1m,6m... 2m,6m... 3m,6m

1m,7m... 2m,7m... 3m,7m

The white ball is then shot at a particular angle from 0 to 360 degrees (0 being north, and going clockwise). Just to make it clear, a ball is 'potted' if at least half of the ball is in area of the 'pocket'

Assuming the balls travel indefinitely (i.e. no loss of energy via friction, air resistance or collisions), answer the following:

a: What exact angle/s should you choose to ensure that all the balls are potted the quickest?

b: What is the minimum amount of contacts the balls can make with each other before they are all knocked in?

## Share this post

## Link to post

## Share on other sites