A funky looking piece of electrical material has a length of 2 cm on the x-axis, which is the axis of current flow.

Assume a coordinate system where the object is sitting between x = -1 cm and x = 1 cm.

The cross-sectional shape of the object is circular, with radius varying as a function of x like so:

r(x) = 0.04 + 0.4*x^2+x^4

r(x) is in cm

A differential volume of this material has a resistance of R ohms in the the direction of current flow, where R varies with distance from the x-axis. If the distance of the differential element from the x-axis is p, then R(p) = 2*sqrt(p)

R(p) is in ohms

What is the total resistance of the whole object for current flowing along the x-axis?

Posted (edited) · Report post

A funky looking piece of electrical material has a length of 2 cm on the x-axis, which is the axis of current flow.

Assume a coordinate system where the object is sitting between x = -1 cm and x = 1 cm.

The cross-sectional shape of the object is circular, with radius varying as a function of x like so:

r(x) = 0.04 + 0.4*x^2+x^4

r(x) is in cm

A differential volume of this material has a resistance of R ohms in the the direction of current flow, where R varies with distance from the x-axis. If the distance of the differential element from the x-axis is p, then R(p) = 2*sqrt(p)

R(p) is in ohms

What is the total resistance of the whole object for current flowing along the x-axis?

Edited by mmiguel## Share this post

## Link to post

## Share on other sites