Professor Templeton liked to practice shooting basketballs in his spare time. He wanted to convert his courtyard into a semicircular 3 point shooting court. He enlisted the help of fellow Braindenizen Bonanova to help him lay out the semicircle into his 1 unit by 1 unit courtyard. When Bonanova arrived Prof. T showed him his square courtyard and eager to show off his math skills he said, "If we lay out the semicircle inside the square, it will lay inside half the square and it's radius will be half that of one side of the square courtyard so it will have an area of
1/2*pi*(1/2)2 or .3927". Bonanova shook his head and smirked at the Prof. "You want to make the semicircle as large as possible don't you?", he replied. "Um, of course", said Prof. T, "isn't that the largest semicircle we can make, it will be tangent with three sides of the square after all". "Not even close", commented Bonanova, and he proceeded to lay out the largest semicircle that would fit inside the 1 unit by 1 unit courtyard. What was the area of Prof. Templeton's new semicircular 3 point basketball court?