ABK

Members
  • Content count

    1
  • Joined

  • Last visited

Community Reputation

0

About ABK

  • Rank
    Newbie
  1. My first approach was to consider modulo 6. Assume a > 6, Since a is prime we have a=1, -1 (mod 6) Thus, a2=1 (mod 6). We know, 26 = 2 (mod 6) Therefore a2+26=3 (mod 6) So any prime greater than 6 would be resulting in a number which is divisible by 3 which NOT prime as required. So we have to check 2, 3 and 5 which are the only primes less than 6. It is easy to see that each would yield a non-prime in a2+26. So we're done!