## Welcome to BrainDen.com - Brain Teasers Forum

 Welcome to BrainDen.com - Brain Teasers Forum. Like most online communities you must register to post in our community, but don't worry this is a simple free process. To be a part of BrainDen Forums you may create a new account or sign in if you already have an account. As a member you could start new topics, reply to others, subscribe to topics/forums to get automatic updates, get your own profile and make new friends. Of course, you can also enjoy our collection of amazing optical illusions and cool math games. If you like our site, you may support us by simply clicking Google "+1" or Facebook "Like" buttons at the top. If you have a website, we would appreciate a little link to BrainDen. Thanks and enjoy the Den :-)
Guest Message by DevFuse

# Jrthedawg

Member Since 22 Jul 2013
Offline Last Active Private

### 100 mathematicians, 100 rooms, and a sequence of real numbers

22 July 2013 - 12:49 AM

I am a collector of math and logic puzzles, and this must be the best I've ever seen.

100 rooms each contain countably many boxes labeled with the natural numbers. Inside of each box is a real number. For any natural number n, all 100 boxes labeled n (one in each room) contain the same real number. In other words, the 100 rooms are identical with respect to the boxes and real numbers.

Knowing the rooms are identical, 100 mathematicians play a game. After a time for discussing strategy, the mathematicians will simultaneously be sent to different rooms, not to communicate with one another again. While in the rooms, each mathematician may open up boxes (perhaps countably many) to see the real numbers contained within. Then each mathematician must guess the real number that is contained in a particular unopened box of his choosing. Notice this requires that each leaves at least one box unopened.

99 out of 100 mathematicians must correctly guess their real number for them to (collectively) win the game.

What is a winning strategy?